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An electron is a mass with a charge that can move relative to an observer, and when doing, so represents
both kinetic energy and magnetic energy.  This paper investigates some obvious questions about the relation-
ship between the two forms of energy.

1.  Introduction

An electric charge placed in vacuum produces an electrostatic
field that surrounds the charge.  When an observer moves rela-
tive to the charge, the electrostatic field observed changes in
time, and in addition, the observer will measure a magnetic field.
The presence of the magnetic field indicates magnetic energy.

For an observer moving relative to a mass, the relative speed
of the mass represents kinetic energy.  Like magnetic energy,
kinetic energy exists only if there is relative movement – in this
case, relative motion between observer and mass.  Kinetic and
magnetic energy are thus quite comparable: both forms of energy
exist only when there is motion relative to an observer.

The questions that I want to answer are these:
1) How much energy does the magnetic field of a moving
charge represent?
2) What is the relation between the magnetic and kinetic energy
of a charged mass?

In addressing these questions, only non-relativistic velocities
need be considered, because relativistic conditions unnecessarily
complicate the situation without adding any additional insight.

2.  Magnetic Energy of a Single Moving Charge

An electric current induces a magnetic field in the surround-
ing space.  The magnetic energy of an electric current is described

by the formula  (Joule), where  is the magnetic in-
duction coefficient of the electric circuit and  is the electric cur-
rent.

The magnetic energy  of an electric current tends to con-
serve the electric current.  Only when there is electric or magnetic
resistance will the current  decline over time and the magnetic
energy  decrease, with both eventually disappearing com-
pletely.

In his electron theory, H.A. Lorentz [1] uses the same repre-
sentation for a magnetic field  (amp/m) at distance  (m)
from an electric current element  (amp m) as Biot & Savart:

   
dH(x, y, z) = IdS 4πR2( )es × er  [amp/m] (1)

Figure 1 illustrates Eq. (1).  The total magnetic field that an elec-
tric current induces at point  is the summation (integra-
tion) of all the magnetic fields  each moving individual elec-
tron in the electric circuit induces at .
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Figure 1.  The magnetic field of a current element 

An electric current normally consists of an essentially infinite
number of moving electrons, but there exists, however, no theo-
retical objection to letting an electric current consist of one single
moving charge.  So theoretically the current element   IdS  can

consist of one moving charge 
 
Qe .

If the current   IdS  consists of only one moving charge, then

  
IdS = Qe Ve  [charge m/sec], 

  
IVedt = Qe Ve   

 
Idt = Qe  [charge]

In the case of a single moving charge 
 
Idt = Qe , where 

 
Qe  is the

charge of that single electron.  The current  I  is not divisible any

further, so 
  
IdS = Qe Ve  is the differential limit of an electric cur-

rent element.
When the electric current element   IdS  consists of a single

charge 
 
Qe , that moves relative to    P(x, y, z)  with velocity 

  
Ve ,

the magnetic field  H  at  P  due to current 
  
IdS = Qe Ve , is ac-

cording Eq. (1):

   
H(x, y, z) = QeVe 4πR2( )ev × er  [amp/m]

Let us consider a sphere-shaped charge 
 
Qe  with radius 

 
Re .

Because nature always seeks the way to minimize the energy

level, the charge 
 
Qe  will be distributed over the surface of the

sphere.  Fig. 2 illustrates the situation where charge 
 
Qe  is at rest

and the movement of the charge is revealed by the relative speed

 V .

When the observer, moving relative to 
 
Qe  with velocity 

  
Ve ,

wants to determine the magnetic field that 
 
Qe  is inducing in the

surrounding space, the observer can choose any coordinate

   P(x, y, z)  compared to the position of charge 
 
Qe (0,0,0) to de-

termine the magnetic field at  P , as long as particle 
 
Qe  keeps the

velocity 
  
Ve  relative to the observer.
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Because there is only one moving charge, the magnetic field

 H  at    P(x, y, z)  is simply determined by (1) as:

   
H(x, y, z) = Qe Ve 4πR2( )ev × er [amp/m] &   R

2 = x2 + y2 + z2

The energy density of the induced magnetic field    H(x, y, z) at

   P(x, y, z) , in vacuum, is:

  
Em = µ0H2 / 2 = µ0Qe

2Ve
2 / 32π2R4  [joule/m3]

The magnetic energy 
 
dWm , for the observer, in volume  dV =

  R
2dα sin(β)dβdR  is:

  
dWm = µ0Qe

2Ve
2 32π2R2( )   dα sin(β)dβdR  [joule]

Integrating  dα  and  dβ  gives:

 
dWm =

  
µ0Qe

2Ve
2 8πR2( )dR

This is the energy of the induced magnetic field in the spherical

shell   4πR2dR  at a radius  R  from the center of the charge 
 
Qe

with a relative speed 
 
Ve .

When the radius of the charge 
 
Qe  is 

 
Re , the total energy of

the induced magnetic field surrounding 
 
Qe , becomes:

  
Wm = µ0Qe

2Ve
2 8πR2( )

Re

∞

∫ dR = µ0Qe
2Ve

2 8πRe (2)

 
Wm  is the total magnetic energy the spherical charge 

 
Qe , with

radius 
 
Re

 moving at speed 
 
Ve  induces in the surrounding (vac-

uum) space.
We mentioned a current that consists of only one electron.

The above mentioned is however valid for any single relative
moving charged sphere.  The single charge can be any (metallic)
charged sphere.  The induced magnetic field  B  at    R(x, y, z)  can
therefore be verified in an experiment according to the equation:

   
B(x, y, z) = µ0QeVe 4πR2( )dev × der  [tesla]

 
Qe , in the above equation is then the total charge of the sphere,

 
Ve  the speed of the charge relative to the magnetometer, and  R

the distance to the center of the charge.

To be able to relate the magnetic energy 
 
Wm  [Eq. (2)] of the

moving charge to the electrostatic energy of 
 
Qe , we have to con-

sider the potential electrostatic energy of a sphere of radius 
 
Re

and charge 
 
Qe .  The electrostatic energy of a charge 

 
Qe  distrib-

uted over a sphere of radius 
 
Re  in vacuum is given by :

  
We = Qe

2 / 8πε0Re (3)

For the observer moving relative to charge 
 
Qe  with speed 

 
Ve ,

the total energy  the charge represents is the sum of magnetic

energy 
 
Wm  (2) and electrostatic energy 

 
We  (3):

  
Wt = Wm +We = µ0Qe

2Ve
2 8πRe +Qe

2 8πε0Re

Considering 
  
c2 = 1 / ε0µ0 ,  we derive:

  
Wt = µ0Qe

2 8πRe( ) (Ve
2 + c2) (4)

The 
 
Wt  is the total energy the moving charge presents to an

observer; the electrostatic energy plus the dynamic energy.  Us-

ing Einstein’s equivalence of mass and energy   E = Mc2  for the

electrostatic energy 
 
We , the equivalent mass that 

 
We  represents

must be:

  
Mp = We / c2 = (Qe

2 / c2) 8πε0Re = µ0Qe
2 8πRe (5)

Substitution the equation for the electrostatic mass 
 
Mp  [Eq. (5)]

in the formula for the total energy 
 
Wt  of the moving charge

(formula 4) we derive:

  
Wt = Wm +We = Mp (Ve

2 + c2)

The magnetic energy 
 
Wm  of the moving charge, expressed in the

mass equivalence 
 
Mp  of the electrostatic energy, becomes:

  
Wm = MpVe

2 (6)

This derived formula for the magnetic energy of a moving charge

is remarkable, considering the kinetic energy 
 
Wk  of a ‘normal’

mass 
 
Mp , moving with relative velocity 

  
Ve , is 

  
Wk = 1

2
MpVe

2 .

3.  The Moving Electron and Magnetic Energy

The classical radius, or Compton radius 
 
RC , of an electron is

calculated by means of the Compton equation [2]:

Figure 2.  The magnetic field

of a charge 
 
Q

e
 moving with

relative velocity  V .
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Mec2 = Qe

2 / 4πε0RC (7)

where 
 
Me  is the rest mass of the electron, 

 
Qe  is the electron

charge, and 
  
c2 = 1 / ε0µ0 .   This equation yields 

 
RC =

  
µ0Qe

2 / 4πMe =  2.81794 10-15 meter.

The equation for the magnetic energy of a charge 
 
Qe  on a

sphere of radius 
 
RC  moving with a relative velocity 

  
Ve , is, from

the formula for the magnetic energy 
 
Wm  [Eq. (2)],

  
Wm = µ0Qe

2Ve
2 / 8πRC

When substituting the mass equivalence, 
 
Me , of the Compton-

equation (7) into (2) and considering 
  
c2 = 1 / ε0µ0 , we get:

  
Wm = 1

2
MeVe

2

So when we assume the electron has the radius 
 
RC , derived

with the Compton equation, the magnetic energy of the moving
electron presents energy equal to the kinetic energy of that same
electron.

A moving ‘pure electrostatic mass’ represents magnetic en-

ergy according to 
  
Wm = MpVe

2  [Eq. (6)], while the magnetic en-

ergy of a moving electron with the Compton radius 
 
RC  has a

magnetic energy of 
  
Wm = 1

2
MeVe

2 .  What causes the factor-of-

two difference?  Considering the Compton equation 
  
Mec2 =

  
Qe

2 / 4πε0RC  and the electrostatic energy of a charged sphere

 
We =  

  
Qe

2 / 8πε0Re , we observe a similar factor two difference.

The Compton equation ‘stores’ twice as much energy as a
charged sphere with the same charge and radius.  This difference
explains exactly the difference between the equations for the

magnetic energy 
  
Wm = MpVe

2 , for the moving charged sphere,

and 
  
Wm = 1

2
MeVe

2 , for the moving electron with the Compton

radius.
We know that apart from a charge, the electron also has a

spin.  The magnetic spin of the electron is not considered in the
Compton equation.

In the book From Paradox to Paradigm [3], the chapter “The

Electron” gives the total energy of an electron 
 
We , at rest, by the

formula:

  
Mec2 = Qe

2 / 8πε0Re + µ0Qe
2c2 / 8πRe (8)

In this presentation for the total energy of an electron at rest, half

the energy is represented by electrostatic energy 
  
Qe

2 / 8πε0Re ,

consistent with the energy of a charged sphere, and the other half

of the energy by 
  
µ0Qe

2c2 / 8πRe , the magnetic spin energy of the

electron.  Calculating the radius 
 
Re  of the electron from Eq. (8)

yields 
 
Re = 1.40897 10-15 meter: exactly the Compton radius.

When we consider that half the intrinsic energy of the elec-
tron at rest is electrostatic energy and the other half is magnetic
spin energy [Eq. (8)], the magnetic energy of a moving electron,
becomes:

  
Wm =

1

8
µ0Qe

2Ve
2 / πRC =

1

2
MeVe

2 (9)

That is, when half of the intrinsic energy of the mass of the elec-
tron is represented by the electrostatic energy, and the other half
by the magnetic spin energy, the calculated magnetic energy of
the moving electron is equal to the kinetic energy of that electron.

Because the kinetic energy of an electron is 
 
Wk =

  
1

2
MeVe

2  and

at the same time the magnetic energy 
 
Wm  is also 

  
1

2
MeVe

2 , the

kinetic energy of the electron must be same energy as the mag-
netic energy.  Otherwise the conservation law for energy would
be violated every time an electron was accelerated or slowed
down.

4.  The Electromagnetic Mass

In Section 2 we showed, with the help of the Electron Theory

of Lorentz, that the magnetic energy 
 
Wm  of a single moving

spherical charge is by Eq. (6) equal to 
 
Wm = 

 
Mp   

Ve
2 , where 

 
Mp

is the mass equivalence of the electrostatic energy of the charged

sphere according to 
 
Mp = 

  
µ0Qe

2Ve
2 / 8πRe .  In Section 3, we cal-

culated the theoretical magnetic energy of the ‘classical electron’.
Eq. (9) evaluated the magnetic energy of the moving electron

  
Wm = 1

2
MeVe

2 .  Let us suggest that the electron, a charged mass,

can be represented by the energy/mass of a charged sphere and
a not-yet-identified mechanical part of the mass.  Eq. (7) becomes:

  
Mec2 = 1

8
Qe

2 / πε0Rc + 1

2
Mec2 (10)

The electrostatic mass of a charged sphere with the Compton
radius explains exactly half the energy/mass of the electron.  The
magnetic energy of the moving electron equals the kinetic energy
of the moving electron.  The question to be answered is: “What
kind of energy/mass represents the other half of the energy in
Eq. (10)?”  In the chapter “The Electron” in the book From Para-
dox to Paradigm [3], the magnetic energy of the spin of the elec-
tron is calculated as exactly half the intrinsic energy of the elec-
tron.  The magnetic spin energy is responsible, and explains the
physics why the charge of an electron is confined.  The expand-
ing force of the charged sphere of the electron is compensated by
means of the contracting force of the spinning magnetic field
surrounding the electron.  The charge of the electron is trapped.

The above presented E&M physics for the electron is however
inconsistent with the QM perspectives, which must be addressed.
We refer to The Feynman Lectures on Physics [4], part II, Chap-
ter 28, “The Electromagnetic Mass”.  In this chapter the electro-
magnetic mass of the electron is derived by means of the momen-
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tum density 
  
g = ε0E × B  (Eq. 27.21 in [4]).  According to the QM

approach in (28-2), 
   
g = (ε0v / c2)E2 sin(θ)  because the momen-

tum density vector is directed obliquely toward the line of mo-
tion. (*)  Furthermore, I quote (28-2): “The fields are symmetric
about the line of motion, so when we integrate over space, the
transverse components will sum to zero, giving a resultant mo-
mentum parallel to  v .  The component of  g  in this direction is

  g sin(θ) , which we must integrate all over space.” (**)
In the above argumentation (*) and (**), vector  p  is thought

to be partly compensated by the opposite vector  p .  Vector
summation is allowed in static situations, where the vectors for
example express the magnitude and direction of a static force.
The  p  is however a dynamic vector, presenting the impulse of
the moving mass/energy density at a certain point.  The total
momentum  p , according to the QM approach is then:

   
p = (ε0v / c2)E2 sin2(θ)2πr2∫ sin(θ)dθdr

where  is the volume element.  The integration
over all space gives:

   
p = 2

3
(e2 / ac2)v (Eq. 28.3 in[4])

This equation, expressed in the symbols used in this article, gives
the impulse:

   
p = 4

3
8πε0c2RC

⎡
⎣⎢

⎤
⎦⎥

v

The electromagnetic mass calculated according to Eq. (28.3) is

  
me = 4

3
Qe

2 / 8πε0c2RC , which is 4/3 the mass equivalence of the

electric field, or 2/3 the mass of the electron 
 
Me .

Although the QM approach differs from the approach in this
article, the outcomes should be consistent with each other.  Be-
cause there is no consistency between the outcomes of the ap-
proaches, there must be an omission.  Recall that in the QM ap-
proach the momentum density magnitude of vector  g  is dimin-

ished with the factor  sin2(θ) , because of the previous mentioned
and marked arguments (*) and (**).  To comprehend the effect of
the correction of the magnitude of the momentum density  g

with the factor  sin2(θ)  we have to consider the QM equation for
the total momentum; the integration of the momentum density

 g  over space to  p , in more detail [Ref.4, Eq. (28.2)]:

   
p = (ε0v / c2)∫ E2(r)sin2(θ)2πr2 sin(θ)dθdr (11)

In the above equation, the motion of the charge is independent of
any variable in the equation, so we are allowed to abstract mo-
tion out of the integral.  Considering that the electrostatic field  E
is a function of  r , we get:

   
p = v (ε0 c2)∫ E(r)2 sin2(θ)2πr2 sin(θ)dθdr (11a)

Because 
  
(ε0 / c2)E(r)2  in (11a) presents the mass density

(kg/m3) of the energy of the electrostatic field    E(r)  and

  2πr2 sin(θ)dθdr = dV  is the volume element, the integration in
Eqs. (11) and (11a) represents the calculation of the mass of the
electrostatic field surrounding the charge.  The corrections men-
tioned in (*) and (**) do not alter the implied physics of the inte-
gration.  By integrating the momentum density  g  around the
charge all over space, the physical interpretation of the integra-
tion is the calculation of the mass of the electrostatic field sur-
rounding the charge.  A mass is a scalar and therefore the correc-
tion of the magnitude of the momentum density vector with fac-

tor  sin2(θ)  becomes an omission, by which the conservation law
for energy is violated.  Part of the mass of the electrostatic field is
unjustly ignored.

The magnitude of  g  presents the magnitude of the mass
density impulse of the moving electrostatic field  E  in the direc-
tion of  v .  The direction of vector  g  does not represent the di-
rection of the mass/energy density movement of the electric
field, and therefore not the direction of the impulse.  Compensa-

tion of the magnitude of  g  with factor  sin2(θ)  violates the en-
ergy conservation law because part of the mass/energy of the
electrostatic field is then ignored.

The momentum density  g  at  P  as a result of the electro-
static field/energy   E(r)  moving with speed  v  at  r  should be:

  
g = Mrv

where 
  
Mr = (ε0 / c2)E(r)2  represents the mass density (kg/m3)

of the electrostatic field.  Integration of  g  over space gives:

   
p = v 2πr2 sin(θ)Mrdθdr∫ = v (ε0 / c2)E(r)22πr2 sin(θ)dθdr∫
Feynman’s Eq. (28.3) becomes now    p = (e2 / ac2)v .  This equa-
tion, expressed in the symbols used in this article, is:

   
p = (Qe

2 / 4πε0c2RC )v   or  
  
p = Mev    or   

   
p = 2Mpv

(
 
Me  is the mass of the electron and 

 
Mp  is the mass equivalence

of the electrostatic field).  The corrected total momentum of the
moving charge  is now completely consistent with the derived
equations in the previous Sections of this article.  The correctly

derived electromagnetic mass 
 
melec , according to the QM ap-

proach, equals now the mass of the electron  and the dy-
namic energy of the electron becomes fully magnetic.

5.  Discussion

How can the magnetic energy of an electron be at the same
time the kinetic energy?  The answer to that question must be
that both forms of energy are different presentations of the same
‘dynamic’ energy.  If an electron moves and collides with another
particle, the change in kinetic energy is transferred from one par-
ticle to the other.  The kinetic energy of the electron changes, be-
cause the electron moves now with a different speed.  The mag-
netic energy also has to change, because the charge of the elec-
tron now also moves with a changed velocity.
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The same argument is valid when an electron (electric cur-
rent) loses magnetic energy through magnetic induction.  The
electron(s) slow down and lose kinetic energy.

When we consider the formulas for magnetic energy of an
electric current and the kinetic energy of a mass, there are simi-

larities.  The magnetic energy of a current is 
  
Wm = LI2  (Joule),

while the kinetic energy of a moving mass is 
  
Wk = 1

2
MV 2

(Joule).
Consider an electric current, where the electrons move twice

as fast, then the induced magnetic energy 
 
Wm  becomes four

times as large and so is the kinetic energy of the moving electrons
in the current.  Both formulas, for the magnetic and kinetic en-
ergy, are consistent with the presentation of equivalence for ki-
netic and magnetic energy.

The logical consequence of the equivalence for magnetic and
kinetic energy is, that every mass that moves possesses kinetic
energy also must have magnetic energy!

The moving proton and magnetic energy

The proton is, like the electron, a single particle, charged
+
 
Qe .  The observable difference between the proton and electron

is the opposite sign of the charge and the difference in mass.
According to the chapter “The Proton and Neutron” in From
Paradox to Paradigm [3], the intrinsic energy of the mass of a
proton can be expressed by the equation:

  
Mpc2 = Qe

2 / 8πε0Rp + µ0Qe
2c2 / 8πRp (8)

where 
 
Mp  is the mass of the proton and  is the radius of the

proton sphere.  The proton mass energy is half electrostatic en-
ergy, and half magnetic spin energy.  The magnetic energy 
of the magnetic field induced by the moving proton becomes
accordingly:

  
Wm = 1

8
µ0Qe

2Ve
2 / πRp = 1

2
MpVe

2

The moving hydrogen atom and the neutron

The proton is a positive charged particle.  The moving proton
must possess magnetic energy.  But if kinetic energy is the same
as magnetic energy, any mass possessing kinetic energy must
have magnetic energy!

The hydrogen atom possesses no electric field outside the ra-
dius of the molecule.  All the electrostatic energy and therefore
all the magnetic/kinetic energy of the moving hydrogen atom
concentrate in the atom, between electron and proton.

The charge of a separated moving electron and proton is not
shielded, as it is in the hydrogen atom.  The separated electron
and proton therefore have a much larger range in which the elec-
tric fields are present and can interact with other charged parti-
cles when there is relative movement.  The electrostatic field in
the hydrogen atom, and therefore the kinetic/magnetic energy, is
contained in the space between the proton and the electron.

For the moving hydrogen atom the same arguments as for the
moving electron and proton are valid.  The kinetic energy of the
hydrogen atom is the induced magnetic energy by the moving
electrostatic field between proton and electron.  Outside the hy-
drogen atom there is no electrostatic field or dielectric displace-
ment, so outside the atom there is no magnetic field.  The mag-
netic/kinetic energy is confined to the area of the electric field,
between proton and electron, in the hydrogen atom.

When a proton and an electron fuse to a neutron, during the
fusion process, the potential electrostatic energy of proton and
electron is transferred into kinetic energy (magnetic energy).
Although fused, the positive and negative charges of proton and
electron still oscillate in the neutron, so the electrostatic field be-
tween both charges still exists, only now concentrated and there-
fore confined in the neutron.

The neutron does not posses an electrostatic field we can ob-
serve, because the oscillation frequency of the neutron is far too

high (approx. 2 1026 Hz “From Paradox to Paradigm”, chapter
“The Proton and Neutron”) to be detected.  Not being detectable
does not mean that for a neutron the equivalence of magnetic
and kinetic energy is no longer valid.
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Correspondence
On ‘Experiment vs. Dogma’ (cont. from p. 109)

To resolve the differences, a unipolar induction formula that
works in all cases considered needs to be found, as with the ef-
fects of a shield or yoke.
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