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28-1. The fields E and B and the

itum density g for a positive elec-
For a negative electron, E and B
versed but g is not.
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28-2. The volume element
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If we use the electronic charge g, for g and the symbol e? for g2/4meq, then
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It is all fine until we set a equal to zero for a point charge—there’s the great
difficulty. Because the energy of the field varies inversely as the fourth power of
the distance from the center, its volume integral is infinite. There is an infinite
amount of energy in the field surrounding a point charge.

What’s wrong with an infinite energy? If the energy can’t get out, but must
stay there forever, is there any real difficulty with an infinite energy? Of course, a
quantity that comes out infinite may be annoying, but what really matters is only
whether there -are any observable physical effects. To answer that question, we
must turn to something else besides the energy. Suppose we ask how the energy
changes when we move the charge. Then, if the changes are infinite, we will be
in trouble.

28-2 The ficld momentum of a moving charge

Suppose an electron is moving at a uniform velocity through space, assuming
for a moment that the velocity is low compared with the speed of light. Associated

with this moving electron there is a momentum—even if the electron had no mass .

before it was charged—because of the momentum in the electromagnetic field.
We can show that the field momentum is in the direction of the velocity v of the
charge and is, for small velocities, proportional to v. For a point P at the distance
r from the center of the charge and at the angle § with respect to the line of motion
(see Fig. 28-1) the electric field is radial and, as we have seen, the magnetic field

is v X E/c?. The momentum density, Eq. (27.21), is

g = €E X B.

It is directed obliquely toward the line of motion, as shown in the figure, and has
the magnitude

g=€lvE2s1n0

The fields are symmetric about the line of motion, so when we integrate over
WComponents will sum to zero, giving a resultant mom\entum
‘parallel to v. The component of g in this direction is g sin 6, which we must inte-

grate over all space. We take as our volume element a rmg with its plane per-
pendicular to v, as shown in Fig. 28-2. Its volume is 21rr sin 6 d@ dr. The total
momentum is then

Since E is independent of § (for v << ¢), we can immediately integrate over 8; the
integral is
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The limits of ¢ are 0 and , so the #-integral gives merely a factor of 4/3, and
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The integral (for v << ¢) is the one we have just evaluated to find the energy; it is
g?/16m%a, and
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